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Abstract

Passivity and dissipativity are energy based properties of dynamical systems that may be
used for the analysis and synthesis of linear and nonlinear systems. The two properties provide
valuable stability results as well as compositional results for the analysis of interconnected
systems. Using both the stability and compositionality results, large scale systems can be
determined to be stable by analyzing the components in terms of energy dissipation and then
sequentially analyzing the system interconnections. One of the drawbacks of this approach is
that demonstrating that a system is passive or dissipative typically requires finding an energy
storage function, which is analogous to a Lyapunov function. As with Lyapunov stability, the
search for a storage function to show dissipativity is in general an open-ended search.

This paper surveys computational methods for finding energy storage functions. This in-
cludes linear matrix inequality (LMI) methods for linear systems and sum of squares (SOS)
methods for polynomial nonlinear systems. When these methods are applicable, the search
for storage functions can be automated to greatly simplify analysis and synthesis of linear and
nonlinear systems. New material is provided on the application of these methods to find pas-
sivity indices for dynamical systems. Additional material is provided on using SOS methods to
demonstrate dissipativity for switched systems. Examples are provided to illustrate how these
methods may be used in practice.
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1 Introduction

Dissipativity is an energy based property of dynamical systems [1, 2]. A system is dissipative
if it only stores and dissipates energy provided by the environment without generating its own
energy. The energy stored in the system is captured by an energy storage function. The rate
energy is supplied by the environment can be specified by an energy supply rate. This supply rate
can be chosen to capture system properties including passivity and L2 stability. While general
dissipativity allows for the most general results, the special case of QSR dissipativity is more
relevant for computational results [3, 4]. The special case of passivity provides valuable results for
analysis of dynamical systems. The notion of passivity is based on electrical circuit analysis where
circuits made up of passive components were known to be stable and form stable feedback loops
[5, 6]. Passive systems are Lyapunov stable and the property of passivity is preserved when systems
are combined in feedback or parallel [7]. These facts can be used to design stabilizing controllers
for passive systems. In our previous work, these methods have been valuable for analyzing network
control systems [8, 9, 10, 11].

The results that follow from dissipativity are only valuable as long as it is possible to show that
a given system is dissipative. Demonstrating dissipativity requires choosing a particular energy
supply rate, and then finding an energy storage function. Finding an energy storage function is
analogous to finding a Lyapunov function when demonstrating stability, which is a challenging
problem in general. The results provided by dissipativity are much more valuable when the process
of showing the property can be automated. When dissipativity can be shown computationally, the
analysis and synthesis involved in control system design is greatly simplified. Traditionally this was
only done for linear systems with quadratic supply rates using Linear Matrix Inequalities (LMIs)
[12]. Recently, this has been extended to a class of nonlinear systems that are modeled using
polynomial equations. Dissipative polynomial systems can be shown to be so with a polynomial
energy storage function by using Sum of Squares (SOS) methods [13].

An important special case of dissipativity is the passivity index framework where the energy
supply rate is characterized by two indices. The passivity indices directly generalize the notion of
passivity by characterizing the level of passivity present in the system. The concept of indices was
defined in [14, 15] and was based on the notion of conic systems [16]. Thorough background on this
topic can be found in [7, 17]. Previously, no work has been published on computational methods of
determining passivity indices using computational methods such as SOS optimization. Some initial
work in this direction is provided in this report.

The notions of passivity and dissipativity have been extended to switched systems in continuous
[18, 19] and discrete time [20, 21, 22]. Additionally, passivity indices have been defined for switched
systems [23]. The definitions in these papers use multiple storage functions to show dissipativity.
This is based on the application of Lyapunov stability to switched systems using multiple Lyapunov
functions [24, 25]. For dissipativity, multiple storage functions capture the fact that energy may
be stored differently for each mode of the system. While these papers contain valuable results, the
burden of demonstrating dissipativity is increased due to the requirement of finding several storage
functions. This report explores SOS methods to facilitate using dissipativity for switched systems.

This paper is organized into the following sections. Section 2 surveys existing methods of
demonstrating dissipativity and passivity for linear systems using LMIs. Section 3 covers demon-
strating dissipativity for nonlinear polynomial systems. This includes previous work on passivity
for polynomial systems and new work on dissipativity for polynomial systems. Section 4 covers the
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special case of passivity indices where SOS methods may be used to computationally determine
the indices. Section 5 covers the extension of these methods to switched systems. Examples are
provided throughout the paper to illustrate how these methods can be applied. Concluding remarks
are given in Section 6.

2 LMIs for Linear Systems

Linear time-invariant (LTI) systems represent an important class of dynamical systems. This class
includes many practical examples from classical control. Indeed, all Lipschitz continuous dynamical
systems can be accurately modeled as a linear system when operating within some neighborhood
of a desired equilibrium point [26].

The continuous time LTI systems of interest may be written,

ẋ = Ax+Bu
y = Cx+Du.

(1)

The matrices A,B,C, and D are of appropriate dimension defined by vectors x ∈ Rn, u ∈ Rm, and
y ∈ Rp. It is well known that unforced linear systems (u(t) = 0, ∀t) are Lyapunov stable if the
matrix A is Hurwitz, i.e. the eigenvalues of A are in the closed left half plane [26].

This paper will focus on continuous time systems but notes are provided for the discrete time
case. Discrete time LTI systems can be written,

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k) +Du(k).

(2)

2.1 Background on LMI Methods

When working with linear systems, many system properties can be formulated as linear inequalities
with unknowns. When appropriate parameters can be found to satisfy the inequalities, the system
has the desired property. The search for the unknown parameters can often be formulated as
a semi-definite optimization problem so that computational solvers may be used to verify the
desired property. In control systems analysis, LMIs can be used to determine stability, optimality,
robustness, and other properties. A thorough summary of control problems that may be solved
using LMIs may be found in [12].

An example of a problem that can be solved using LMI methods is Lyapunov stability of an
unforced linear system. It is well established that linear systems are stable if and only if there exists
a quadratic supply rate V (x) = xTPx such that V > 0 and V̇ ≤ 0 [27]. The function V being
positive is satisfied by the LMI P > 0. Ensuring that the derivative of V is negative semi-definite
can be shown in the following.

V̇ (x) = ẋPx+ xTPẋ

= (Ax)TPx+ xTP (Ax)

= xT (ATP + PA)x

≤ 0
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Clearly this result holds when the matrix ATP + PA is negative semi-definite. We can test for
stability by searching for a matrix P that simultaneously satisfies P > 0 and ATP +PA ≤ 0. This
search is an LMI feasibility problem. When feasible, the linear system is stable. Since this result is
necessary and sufficient, when the LMI problem can be shown to be infeasible, the lack of a solution
implies that the linear system is unstable.

The general LMI optimization problem can be written,

min cTx

subject to Ax ≤ b.

This problem can be solved using solvers such as mincx provided by the Robust Control Toolbox
in MATLAB. For many problems the quantity to minimize is arbitrary. Instead finding just a single
feasible solution solves the problem of interest. This type of problem can be solved using feasp
in the Robust Control Toolbox. These solvers make use of interior point methods from linear
programming to produce solutions in polynomial time [28].

2.2 LMIs to Show Passivity

The property of passivity originated in the study of electronic circuits made up of passive compo-
nents. It was known that passive circuits are stable and that interconnecting two passive circuits in
feedback forms a new circuit that was both passive and stable. There is no such stability guarantee
when connecting stable circuits in feedback. This simplified the design of stable circuits [5, 6].
Although this theory was well known for circuits, the results are not dependent on the supply rate
(power) being in a standard unit of energy such as Watts or the energy storage function capturing
electrical energy. Passivity can be applied to linear and nonlinear systems with a generalized no-
tion of energy quantified by an energy storage function. The property was defined for a state space
representations in [2].

The key properties from passive circuit analysis carried over to state space systems. For one,
these systems are Lyapunov stable. Additionally, the feedback interconnection of two passive
systems remains passive (Fig. 1). These two facts together imply that a feedback loop made up of
any two passive systems is Lyapunov stable. Essentially, passivity provides open loop conditions

Figure 1: The feedback interconnection of two dynamical systems G1 and G2.

for closed loop stability. Additionally, passivity is preserved when two systems are combined in
parallel. Large scale systems that are stable can be designed by systematically connecting passive
components in feedback or parallel. For more detail on passivity theory, refer to [27, 7, 29].
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Definition 1. [2, 27, 7] A dynamical system is passive with respect to an input space U ⊂ Rm if
there exists a non-negative energy storage function V (x) such that the energy stored in the system
is bounded above by the energy supplied

∫

uT ydt to the system over any finite time interval, i.e. for
u(t) ∈ U and ∀t1, t2 s.t. t1 ≤ t2

∫ t2

t1

uT ydt ≥ V (x(t2))− V (x(t1)). (3)

This definition is with respect to an input set U . For the purposes of this paper it will be
assumed that U = Rm. Note that this definition of passivity is standard for linear as well as
nonlinear systems. Passive linear time-invariant (LTI) systems are also known as positive real
systems.

The use of LMIs in passivity theory comes from earlier work on the positive-real lemma,
also known as the KYP Lemma. This lemma was developed by Kalman [30] using results from
Yakubovich [31, 32] and Popov [33]. The lemma has been extended to nonlinear systems [29].

Consider a passive linear system (A,B,C,D) with quadratic storage function, V (x) = 1
2x

TPx,
where P is positive definite. We can limit our attention to quadratic storage functions without
loss of generality because a linear system is passive if and only if there exists a quadratic energy
storage function [27]. Analyzing the derivative of the energy storage function and comparing it to
the passive inequality yields the following derivation.

V̇ (x) =
1

2

[

ẋPx+ xTPẋ
]

=
1

2

[

(Ax+Bu)TPx+ xTP (Ax+Bu)
]

=
1

2

[

xT (ATP + PA)x+ xTPBu+ uTBTPx
]

≤ uT y =
1

2

[

uT y + yTu
]

=
1

2

[

uTCx+ uTDu+ xTCTu+ uTDTu
]

⇐⇒

[

x
u

]T [

ATP + PA PB − CT

BTP − C −D −DT

] [

x
u

]T

≤ 0 (4)

This derivation shows that a system is passive when the matrix on the last line is negative semi-
definite. The problem of finding such a P to make this matrix negative can be formulated as an
LMI. Assuming that the LMI problem is feasible, such a P exists (and thus V (x)) to show passivity.
This test is a necessary and sufficient test to show whether or not an LTI system is passive. When
the test fails, it can be concluded that the system is not passive.

An example is provided to illustrate the LMI methods for passive LTI systems. As a quick
note, the system considered satisfies the necessary conditions of passivity, i.e the system is stable,
minimum phase, and has relative degree zero. However, these conditions are not sufficient to
conclude passivity so an LMI is used to determine passivity. The solver feasp in MATLAB is used
to solve this feasibility problem.
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Example 1. Consider a continuous time linear system,

ẋ =

[

0 1
−2 −2

]

x+

[

0
1

]

u

y =
[

−1 2
]

x+ 1.5u.
(5)

Passivity of this system can be tested using LMIs by assuming a storage function of the form
V (x) = 1

2x
TPx. The solver provides a solution,

P =

[

5.59 0.96
0.96 1.94

]

. (6)

The matrix P is positive definite since both eigenvalues are positive: 1.698 and 5.824. Passivity
can be verified by substituting the matrix P into the LMI (4). The LMI evaluates to





−3.84 −0.203 1.96
−0.203 −5.82 −0.065
1.96 −0.065 −3.00



 , (7)

which is negative definite since all eigenvalues are less than zero: −5.860, −5.392, and −1.408.

The methods in this section to show passivity for continuous time systems can also be applied
to discrete time systems with dynamics (2). It is assumed that the storage function is quadratic,
V (x) = 1

2x
TPx. The LMI test for passivity can be written,

[

x
u

]T [

ATPA− P ATPB − CT

BTPA− C −D −DT

] [

x
u

]T

≤ 0 (8)

For more on LMIs for passive linear systems, refer to the following surveys and the references
therein. [34, 35].

2.3 LMIs to Show Dissipativity

Dissipativity is a property of dynamical systems that is more general than the notions of passivity
and L2 gain for state space systems. This property provides valuable tools for analysis and control
of dynamical systems. Unlike passivity, dissipative systems aren’t necessarily stable and don’t
always always form stable feedback loops. However, dissipativity theory does provide sufficient
conditions to assess stability for individual systems and for feedback loops. These results can be
applied to cases when other sufficient results such as the passivity theorem or the small gain theorem
fail. This generalization is accomplished by varying the notion of energy supplied to the system.
When an energy supply rate is chosen for a particular system, the actual dynamics of the system
are abstracted to this dissipative property which may be used to assess stability or other desired
properties.

There are important control synthesis methods that follow from the property of dissipativity.
This is done by first finding a dissipative rate (or a class of rates) that is valid for a given plant.
This rate can be used to find a set of complementary dissipative rates for a controller. These com-
plementary dissipative rates guide the design of the controller by providing bounds on the allowable
dissipative behavior. When these guidelines are followed, stability of the feedback connection of
plant and controller is guaranteed.
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Definition 2. [1, 7, 29] A system is dissipative with respect to an input space U ⊂ Rm if there
exists a non-negative energy storage function V (x) such that the energy stored in the system is
always bounded above by the energy supplied ω(u, y) to the system over any finite time interval, i.e.
for u(t) ∈ U and ∀t1, t2 s.t. t1 ≤ t2

∫ t2

t1

ω(u, y)dt ≥ V (x(t2))− V (x(t1)). (9)

For this paper, the input space will be assumed to be, U = Rm.
It should be noted that it isn’t possible to use LMIs to demonstrate dissipativity for all supply

rates ω since there is no guarantee that the resulting inequality will be linear in the unknown terms.
When we impose a quadratic structure on the dissipative rate, it is possible to assess a variety of
dissipative behaviors by using LMIs. The following quadratic supply rate comes from the work of
Hill and Moylan [3, 4].

Definition 3. [3] A system is QSR-dissipative if it is dissipative with respect to the following supply
rate,

ω(u, y) =

[

y
u

]T [

Q S
ST R

] [

y
u

]

, (10)

where Q = QT and R = RT .

The parameters Q, S, and R can be chosen to assess a variety of dissipative behaviors including
passivity and finite-gain L2 stability. In general, dissipativity can be used to assess other behavior
such as asymptotic stability or input-to-state (ISS) stability [34].

As in passivity theory, it is possible to use LMIs to determine whether or not a system is
QSR dissipative for a fixed Q, S, and R. The storage function is again assumed to be quadratic,
V (x) = 1

2x
TPx, with the constraint P > 0. The following LMI can be derived by generalizing the

positive real lemma.
[

ATP + PA− CTQC PB − CTS − CTQD
BTP − STC −DTQC −DTQD − STD −DTS −R

]

≤ 0 (11)

This LMI along with the condition that P > 0 represent the constraints that the optimization
problem is subject to. As with passivity, the MATLAB solvers can be used to find an appropriate P
to satisfy the LMIs and complete the storage function. The discrete time version of this LMI can
be written,

[

ATPA− P − CTQC ATPB − CTS − CTQD
BTPA− STC −DTQC −DTQD − STD −DTS −R

]

≤ 0. (12)

More details about these LMIs can be found in [35].

3 SOS for Nonlinear Systems

This section focuses on SOS methods to show passivity and dissipativity for nonlinear systems.
The nonlinear systems of interest are ones with only polynomial terms. Examples of polynomial
systems can be found in applications such as biological systems and process control. A detailed list
of common polynomial nonlinearities can be found in [13].
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The polynomial systems of interest have the following form,

ẋ = f(x) + g(x)u
y = h(x) + j(x)u,

(13)

where f, g, h, and j are polynomial functions of the state and of appropriate dimension given by
x ∈ Rn, u ∈ Rm, and y ∈ Rp. It should be noted that linear systems are a special case of polynomial
systems. We know that nonlinear systems are stable when there exists a positive Lyapunov function
V (x) such that V̇ ≤ 0. When the Lyapunov function is a polynomial function of the state, it is
referred to as a polynomial Lyapunov function.

SOS methods can only be directly applied to polynomial systems. However, many nonlinear
terms that are not polynomial can be approximated by a polynomial model, e.g. a finite truncation
of the Taylor series expansion of the term. The approximation can be arbitrarily accurate for a
given operating region if a high order truncation is used. Alternatively, the polynomial portion
of the model dynamics may be handled using SOS methods and any other dynamics that are
sector-bounded may be treated using existing methods [27, 7].

3.1 Background on SOS Methods

Several problems in control systems can be formulated as a search for a positive definite (PD) or
positive semi-definite (PSD) function, F (x) ≥ 0, ∀x ∈ Rn. It is clear that this is the case for
Lyapunov stability, by showing that V is PD and −V̇ is PSD the system is stable. This is also the
case for other problems in control systems such as Lyapunov stability [36], robustness [37], region
of attraction [37], hybrid system verification [38, 39], stability with delays [40] and several others.

Traditionally, these problems are computationally efficient to solve for linear systems using
LMIs while they are not computationally feasible in the nonlinear case. In general, these problems
are non-convex and np-hard [36]. These problems have recently been approached for polynomial
nonlinear systems using semi-definite programming. The key step in formulating the optimization
problem is in replacing the positive semi-definite condition with an alternative sufficient condition.
This condition is to show that the function is instead a sum of squares (SOS) of lower order
polynomials [36].

F (x) =
∑

i

f2
i (x) ≥ 0 (14)

Clearly, a function being SOS implies that the function is PSD although it is not a necessary
condition in general.

We consider polynomials that are functions of an nth dimensional variable. In order for a
polynomial to be a sum of squares, the degree m must be even. We take the function of interest
F (x) and write it in the following form,

F (x) = zT (x)Qz(x), (15)

where z is the stacked vector of all possible monomials up to degree m/2. For example, considering
the case when n = 2 (pick variables x1 and x2) and m = 4 the possible monomials are given by,

z(x) =













x1
x2
x21

x1x2
x22













. (16)
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The matrix form is known as a Gram matrix representation. It has been shown that F (x) has a
sum of squares decomposition if and only if it can be written as in (15) with a positive semidefinite
Q [41]. This result enabled the use of semi-definite programming for polynomial nonlinear systems.
An example is given to demonstrate the matrix decomposition.

Example 2. Consider the polynomial

f(x) = 2x21 + x41 − 2x31x2 + 6x21x
2
2 − 6x1x

3
2 + 9x42. (17)

This polynomial may be written in Gram matrix form (15)

f(x) =









x1
x21

x1x2
x22









T 







2 0 0 0
0 1 −1 0
0 −1 6 −3
0 0 −3 9

















x1
x21

x1x2
x22









. (18)

where the matrix Q is positive definite. This guarantees that f(x) can be written as a SOS,

f(x) = 2x21 + (x21 − x1x2 + 3x22)
2. (19)

It should be noted that the matrix Q given in the example is not unique. It is possible to
characterize all such matrices that can represent f(x) in this form. This is done by identifying the
matrix N such that zT (x)Nz(x) = 0. Any matrix Q+λN for real valued λ can also represent f(x).
Finding the Gram matrix decomposition does not automatically provide the SOS representation.
When an appropriate matrix factorization of Q can be found, it is possible to determine the SOS
representation of the function [42].

A typical control problem using SOS methods begins with a given system with polynomial
dynamics and assumes a polynomial form for an unknown function. This class of problems can be
setup as a semi-definite optimization problem. When the problem is feasible, there exists a function
that is SOS which implies that it is PSD. The optimization problem can be written in the following
way.

min c1u1 + ...+ cnun
subject to Pi(x) = Ai,0(x) +Ai,1(x)u1 + ...+Ai,n(x)un

for i = 1, ..., n
(20)

This problem can be shown to be convex and solvable using semi-definite programming. Computa-
tional solvers are available such as SOSTOOL [43] for MATLAB. SOSTOOL relies on semi-definite
solvers such as SeDuMi.

3.2 SOS to Show Passivity

Traditional passivity theory requires finding a non-negative storage function V (x) such that V̇ ≤
uT y. This problem can be rephrased as finding parameters such that V and uT y− V̇ that are PSD.
Developing a computational method of demonstrating passivity for polynomial systems mirrors the
work of Lyapunov stability for polynomial systems. The original contribution was in recognizing
that it is possible to relax these conditions to other sufficient conditions. In this case, instead of
showing that V and uT y − V̇ are PD, the problem is altered to show that they are SOS. This fact
has been pointed out recently [34].
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Once the problem is formulated this way, there are efficient solvers to find a solution. Like the
other SOS problems, the existence of a SOS storage function is only sufficient for showing passivity.
In general, it isn’t possible to use SOS methods to demonstrate that a system is not passive. Other
problems related to passivity have been approached using SOS. One such problem is the search for
state feedback to render a system passive [44, 45].

It may help to illustrate how SOS methods can be used with an example. The following
demonstrates how SOS methods can be used to show passivity of a polynomial nonlinear system.

Example 3. Consider a polynomial nonlinear system,

ẋ =





−(x31 + x1x23)(1 + x23)
−(x21x2 + x2)(1 + x23)

−(x3 + x21x3)(1 + x23)− 3x3



+





0
0
1



u

y =
[

x3
]

.

(21)

A storage function is chosen to be of the form V (x) = xTPx+a1x41+a2x42+a3x43. Using SOSTOOLS
in MATLAB the system is shown to be passive with P = diag{1.70, 1.29, 0.5}, a1 = 0.867, a2 = 0.815,
and a3 = 0 which yields the storage function V (x) = 1.70x12+1.29x22+0.5x32+0.867x14+0.815x24.

A quick check can be done to verify passivity by evaluating V̇ (x) = ∂V (x)
∂x [f(x) + g(x)u] which will

be bounded above by yTu.

It is important to remember that the relaxation of the problem to search for functions that are
SOS instead of positive is a sufficient only test of passivity. When the optimization problem fails to
find parameters of the storage function to show passivity, it cannot be concluded that the system
is not passive. Instead, the test is inconclusive.

3.3 SOS to Show Dissipativity

The same sort of derivation applies to the search for storage functions for dissipative polynomial
systems. Once again, general dissipativity does not immediately allow a computational algorithm
to be formulated to find a storage function. However, we don’t have to restrict ourselves to the
QSR-dissipative rate. Whenever the suply rate ω is a polynomial function of the arguments u and
y, a semi-definite optimization problem can be formulated to search for a storage function. At this
point, the feasibility problem can be run to find an energy storage function V ≥ 0 such that,

ω(u, y)− V̇ ≥ 0. (22)

As before, the algorithm relaxes the positive conditions to instead find parameters that guarantee
that V and ω(u, y)− V̇ are SOS.

SOS optimization methods have been employed to find energy storage functions for dissipative
polynomial systems for specific energy supply rates [13, 46, 47]. These papers show that dissi-
pation inequalities involving an unknown storage function can be formulated as a SOS problem.
The authors investigate dissipative inequalities for the minimum phase property, robustness, and
synchronizing feedbacks. In each case, they derive a new inequality that can be solved using SOS.
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4 Computational Methods for Passivity Indices

The passivity index framework represents an important intermediate analysis method between
passivity and dissipativity. The framework is a special case of dissipativity where the dissipative
rate is characterized by two parameters: the passivity indices. The indices generalize passivity
to apply feedback stability results to systems that may not be passive. While passivity can only
be directly used to assess systems as passive or not passive, passivity indices capture the level of
passivity in a system. This section will introduce the indices, cover stability results, and discuss
how SOS methods may be applied. Examples using SOS methods to find passivity indices are
provided. More details on passivity indices may be found in [7, 17].

4.1 Background on Passivity Indices

The level of passivity of a system can be captured by using the two passivity indices. They are
defined so that a positive value indicates an excess of passivity and a negative value indicates a
shortage of passivity. A passive system must have both indices positive or zero.

The first index is the output feedback passivity (OFP) index. This is a measure of the level of
stability of a system. It is defined as the largest gain that can be placed in positive feedback that
still forces a system to be passive (Fig. 2). For unstable systems, this value will be negative.

Definition 4. The output feedback passivity index (OFP) is the largest gain that can be placed in
positive feedback with a system such that the interconnected system is passive (Fig. 2). This notion
is equivalent to the following dissipative inequality holding for the largest ρ,

∫ T

0
uT ydt ≥ V (x(T ))− V (x(0)) + ρ

∫ T

0
yT ydt, ∀T. (23)

Figure 2: This block diagram demonstrates the physical significance of the OFP index ρ that is the
largest gain that compensates for an excess or shortage of stability to exactly passivate G.

The second index is the input feedforward passivity (IFP) index. It is dependent on the feed-
forward term j(x) of a system (in eq. (13)) and the stability of the zero dynamics. A positive value
indicates that the term j(x) is positive for all x and that the zero dynamics are asymptotically
stable. If j(x) < 0 for some x or the zero dynamics are unstable, the index will be negative.

Definition 5. The input feedforward passivity (IFP) index is the largest gain that can be put in a
negative parallel interconnection with a system such that the interconnected system is passive (Fig.
3). This notion is equivalent to the following dissipative inequality holding for the largest ν,

∫ T

0
uT ydt ≥ V (x(T ))− V (x(0)) + ν

∫ T

0
uTudt, ∀T. (24)
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Figure 3: This block diagram shows that the IFP index is the largest feedforward gain ν that
compensates for an excess or shortage of the minimum phase property of system G.

These definitions of passivity indices consider only one index at a time. When only one index
is considered, the other is implicitly considered to be zero. Often it is worth considering non-zero
values for both indices, and these simultaneous indices can be visualized in Fig. 4. Applying both
indices is the equivalent to the system being dissipative with respect to the energy supply rate,

ω(u, y) = (1 + ρν)uT y − ρyT y − νuTu. (25)

Figure 4: This block diagram demonstrates the definition of the indices when both are applied.

It should be noted that this dissipative rate is not simply the sum of the two terms from the
individual definitions of ρ and ν. This dissipative rate allows a strong connection to be made to
conic systems [16] and allows for a block diagram to be drawn that provides a physical interpretation
for the indices. The connection to conic systems was explored in [48].

As stated earlier, the main reason to use passivity indices is to extend the feedback stability
results provided by passivity theory. It is well established that the feedback interconnection (Fig.
1) of two passive systems is passive and stable. If one of the systems is not passive but “almost”
passive, the results may not be applied at all. The following result shows how knowing the passivity
indices of two systems in feedback may be used to assess stability

Theorem 1. ([17]) Consider the feedback interconnection (Fig. 1) of two nonlinear systems G1

and G2 where G1 has indices (ρ1,ν1) and G2 has indices (ρ2,ν2). The interconnection is L2 stable
if the following matrix is positive definite:

A =

[

(ρ1 + ν2)I
1
2(ρ1ν1 − ρ2ν2)I

1
2(ρ1ν1 − ρ2ν2)I (ρ2 + ν1)I

]

> 0 (26)
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This is the most general result that can be applied to a large class of nonlinear systems to show
L2 stability. There are less conservative results for LTI systems [48].

4.2 SOS Methods for Passivity Indices

In the basic case, SOS methods can be used to verify that a system has a given pair of passivity
indices. This is a special case of the methods for dissipative systems discussed previously. The
dissipative rate is chosen to be

ω(u, y) = (1 + ρν)uT y − ρyT y − νuTu, (27)

for a specific (ρ, ν) pair. At this point, the SOS methods for dissipative systems can be directly
applied to verify that the indices hold. It is important to note that this test is sufficient only. In
the event that the test fails, this does not indicate that these indices are not valid for the system
but only that the test may not be used to assess these indices.

The more interesting case is when SOS methods can be used to find indices or determine
maximum indices. Finding the maximum value of an index for a given system is valuable since the
maximum provides the least restrictive results to show stability.

For now, consider the case when only a single index is of interest. This may occur when it
can be observed that one index has a maximum value of zero. This is the case when a system
lacks a feedforward term. For the model (13), when j(x) = 0 the index ν has a maximum value of
zero. The index may be less than zero if the zero dynamics of the system are unstable. When this
occurs, the SOS optimization problem will not successfully terminate. For now, assume that the
zero dynamics are stable.

To maximize the index ρ the following optimization problem may be defined.

min −ρ
subject to V (x) =

∑

i aip
2
i (x)

uT y − ρyT y − ∂V
∂x f(x, u) =

∑

i bip
2
i (x)

(28)

The functions pi(x) are lower order polynomials. If the optimization problem successfully termi-
nates, the parameters of the storage function V are found, and the index ρ is maximized. This
method can be seen in the following example.

Example 4. Consider a system with dynamics

ẋ =

[

−2x1 + x2 − 0.5x31
−0.5x1 − x2 − x32 + u

]

y = x2 + 2u.
(29)

Using the SOS method above to maximize ρ, an optimization problem can be set up in SOSTOOLS.
The program terminates successfully with storage function

V (x) = 0.33x41 + 0.23x42 + 0.31x21 + 0.64x22 (30)

and OFP index ρ = 0.357. This result can be verified by hand to show that ∂V
∂x [f(x) + g(x)u] ≤

uT y − 0.357yT y .
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This process can be repeated to find the IFP index ν. The optimization problem (28) can be
revised to minimize −ν with the appropriate changes to the constraints.

Example 5. Reconsidering system (29), it is desirable to estimate the IFP index ν. A similar
optimization problem is set up in SOSTOOLS. The program terminates successfully with storage
function

V (x) = 0.67x41 + 0.49x21 + 0.50x22 (31)

and IFP index ν = 2. This example demonstrates nu has a strong connection to the feedforward
term j(x). For many examples, when the zero dynamics are stable and the term j(x) is constant,
the IFP index is equal to j(x).

Ideally, an optimization problem would be set up to simultaneously find both ρ and ν. Un-
fortunately these methods cannot be applied directly to find both indices because the dissipative
rate (27) contains the product of the indices. The semidefinite solvers that find solutions to SOS
problems can only be solved when the constraints are linear in the unknown variables.

When it is desirable to find both indices, one method of computing such a pair is to fix one
index and then maximize the other index. This process can be repeated for several fixed values of
ρ and then several fixed values of ν. This method gives several pairs of indices. The “best” pair
may be determined by the control designer for the particular application.

Alternatively, the values for the indices can be found by iterating over a range of ρ and a range
of ν. The drawback of this approach is that it takes a lot of computational resources to iterate over
a large range with fine precision. While this method is typically not efficient, it is possible to speed
up the computation by first finding the maximum of each index when the other is set to zero. This
narrows the search range to focus the problem and save computations. The computational load
can be further reduced by an adaptive optimization problem that first computes pairs of indices on
a sparse grid and then refines the grid until the desired level of precision is achieved.

As a side note, the problem of finding an optimal pair of passivity indices is more complicated
than properly defining an optimization problem. For most systems there does not exist an objective
“best” pair of indices. Instead, the maximal pairs of the indices form a function that appears to
always be continuous but may not differentiable. It is often possible to reduce one index in order to
increase the other. While the SOS optimization problem may not find pairs exactly on the function,
they are typically very close.

5 Computational Methods for Switched systems

SOS methods to demonstrate passivity and dissipativity allow these concepts to be applied to
systems more readily. This is especially true for switched systems. This notion of dissipativity for
switched systems is based on multiple storage functions. A system with M subsystems will have
as many as Menergy storage functions. There are additional functions to determine in order to
demonstrate dissipativity that may be difficult to find. When a system has more than a few discrete
modes, the definition becomes overly cumbersome to apply without computational methods.

The following subsection introduces the notion of dissipativity used for switched systems. Then
the problem is reformulated so that SOS methods may be used to find the functions of interest.
Finally an example is provided to show how this method may be applied in practice.
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5.1 Background on Dissipativity for Switched Systems

A general nonlinear switched system has the following form, where x ∈ Rn, u ∈ Rm, and y ∈ Rp,

ẋ = fσ(x, u)
y = hσ(x, u).

(32)

The function σ : R+ → 1, ...,M is piecewise constant and indicates the index of the current active
subsystem. At any given time, σ(t) = i for i ∈ {1, ...,M} and the dynamics are nonlinear and
time-invariant. There are a finite number of subsystems M , so i is confined to be an integer from 1
to M . The switching in the system captures discrete behavior from an underlying hybrid process.
Each subsystem of the switched system represents a discrete mode of that process so the terms
mode and subsystem will be used interchangeably.

It should be noted that the state variable x(t) is continuous at all times including switching
instants where it is typically not differentiable. The input u(t) may be discontinuous but is as-
sumed to have a countable number of discontinuities. In addition the input must be locally square
integrable. This assumption is made to avoid the case when u(t) approaches infinity in finite time.

The notion of dissipativity for switched systems using multiple storage functions parallels the
work on stability of switched systems using multiple Lyapunov functions [24, 25].

Definition 6. A switched system (32) is dissipative if there exist positive definite storage func-
tions Vi(x), energy supply rates ωi

i(u, y) and cross supply rates ωi
j(u, y, x, t) such that the following

conditions hold.

1. Each subsystem i is dissipative with respect to ωi
i while active, i.e. for tik ≤ t1 ≤ t2 ≤ tik+1

and ∀i, k,
∫ t2

t1

ωi
i(u, y)dt ≥ Vi(x(t2))− Vi(x(t1)). (33)

2. Each subsystem j is dissipative with respect to ωi
j when the ith subsystem is active, i.e. ∀j *= i,

and for tik ≤ t1 ≤ t2 ≤ tik+1,
∫ t2

t1

ωi
j(u, y, x, t)dt ≥ Vj(x(t2))− Vj(x(t1)). (34)

3. For all i and j there exist absolutely integrable functions φi
j(t) and some input u∗(t) that may

depend on the state x(t) such that the following three conditions hold, ∀t ≥ t0,

• fi(0, u∗(t)) ≡ 0,

• ωi
i(u

∗, y) ≤ 0, and

• ωi
j(u

∗, y, x, t) ≤ φi
j(t), ∀j *= i .

This definition can be narrowed to passivity when the supply rate ωi
i(u, y) = uT y for all i.

It should be noted that when considering passivity the input u∗(t) = 0 trivially satisfies most of
the third condition. However, the existence of functions φi

j(t) is still not trivial. With this new
definition of passivity, the authors show that passive switched systems with all storage functions
satisfying Vi(0) = 0 are Lyapunov stable and that the feedback interconnection of two passive
systems is again passive.
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5.2 SOS for Switched Systems

For SOS methods to be used to show dissipativity, the switched system must have polynomial
dynamics. This means that for all modes i the functions fi(x, u) and hi(x, u) must be polynomial
in x and u. Additionally, all functions involved in showing dissipativity must be polynomial. This
includes the energy supply rates ωi

i, the energy storage functions Vi, and the cross supply rates ωi
j .

The first step in showing dissipativity for a switched system is in specifying the energy supply
rates. It is assumed that these are given for a particular switched system. These are fully specified
if passivity is the property of interest. In some other cases these may be parameterized, and the
parameters can be found by the semi-definite solver simultaneously with the storage functions. In
the general case, these must be specified for each mode of the system in advance.

The next step in showing dissipativity is to find an energy storage function for each mode of the
system. These storage functions are dependent on the energy supply rate specified previously (33).
A SOS optimization program can be defined to find each storage function assuming that a form
is chosen for the storage function. Luckily, the forms for the storage functions can be generated
mostly automatically. This can be done when the variables of interest {x1, · · · , xn} and the desired
order of the storage function are specified. For linear systems, a quadratic form can be chosen,
Vi(x) = xTPix where Pi = P T

i . The symmetry of Pi reduces the number of parameters to find from
n2 to 1

2(n
2 + n). In the more general case, the storage function can be parameterized by

Vi(x) = zT (x)Qiz(x) (35)

where Qi = QT
i . The form is fully specified when z(x) is chosen and the SOS program finds the

elements of Qi. For example in the case when x ∈ Rn and the storage function is fourth order,

z(x) =
[

x1, · · · , xn, x
2
1, · · · , x

2
n, x1x2, · · · , x1xn, x2x3, · · · , xn−1xn

]

. (36)

The SOS program can be repeated for each mode of the system to find all storage functions or the
problem can be combined into a single large SOS program.

In addition to storage functions, showing dissipativity requires finding as many as M(M − 1)
different cross supply rates. Like storage functions, a form must be chosen for the cross supply
rates and the parameters may be determined by the optimization problem. For two modes i and
j, the form for the cross supply rates can be chosen by comparing the dynamics of the two modes
and the storage functions Vi and Vj determined in the previous SOS program. Since these are both
known quantities, the forms can be specified computationally.

For example, consider the cross supply rate ω2
1 which captures the rate energy is supplied to

mode 1 when mode 2 is active. The rate depends on the energy storage for mode 1 (V1(x)) and it
depends on the energy dissipation of mode 2 which includes V2(x), ω2

2, and the dynamics of mode
2. The quantity of interest is the difference between the energy being stored for subsystem 2 and
for subsystem 1.

ω2
2(u, h2(x, u))−

∂V2

∂x
f2(x, u) +

∂V1

∂x
f2(x, u) (37)

All the functions in this expression are known already so the expression is fully characterized.
Additionally, the functions are all polynomial. The resulting polynomial terms can be used as a
candidate for the cross supply rates with unknown coefficients. The coefficients can be found by
running a SOS program.
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This step is more involved than finding storage functions. For one, there are as many as
M(M − 1) cross supply rates so there are many more functions to determine. Additionally, each
function is dependent on more terms so each SOS program may take longer to execute. However,
this analysis method is expected to run off line. Once the storage functions and cross supply rates
are determined, they may be used directly without running additional SOS programs.

The third condition of dissipativity involves the search for an input u(t) that has certain prop-
erties. This input can be applied to the system in order to stabilize it. The conditions have a
strong parallel with control Lyapunov functions that are used to find stabilizing inputs. In some
cases the existence of such an input is obvious from the dynamics and the cross supply rates. In
other cases it may be very difficult to find such an input. For now, there does not appear to be a
SOS method to find this input. For particular systems there may be a quantity to optimize over
that will guarantee the existence of that input.

5.3 Example

In the last part of this section, the SOS methods discussed will be applied to a nonlinear switched
system to show passivity.

Example 6. A switched system with two modes is considered. Mode 1 has dynamics given by

ẋ =

[

−0.6x31 − 2x1 + 2x2
−1.2x1 − 3x2 + u

]

y =
[

x2
]

,
(38)

and mode 2 has dynamics given by

ẋ =

[

−2x31 + 0.5x2
−0.6x1 − 3x2 − x32 + u

]

y =
[

x2
]

.
(39)

Both modes are passive when active so ωi(u, y) = uT y for i = 1, 2. SOS methods can be used to find
storage functions to demonstrate passivity when active. The form of storage function is assumed
to contain all terms quadratic or quartic in x1 and x2. The optimization problem results in the
storage functions,

V1(x) = 0.3x21 + 0.5x22
V2(x) = 0.6x21 + 0.5x22.

(40)

Now SOS methods can be used to find cross supply rates. The following form was chosen for the
cross supply rates,

ωj
i (u, y, x, t) = uT y + a1x21 + a2x1x2 + a3x22 + a4x41

+a5x31x2 + a6x21x
2
2 + a7x1x32 + a8x42.

(41)

The optimization problem gives the cross supply rates,

ω1
2(u, y, x, t) = uT y − 1.2x41 − x42 + 0.0075x21 − 3x22

ω2
1(u, y, x, t) = uT y − 0.7x41 − 2.4x21 + 1.2x1x2 − 3x22.

(42)

Some terms are not present in the final cross supply rates due to the appropriate coefficient given by
the optimization problem being sufficiently near zero. For both cross supply rates, the input u(t) = 0
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is considered. The rate ω2
1 can be bounded by φ(t) = ||x(t0)|| e−t for all x ∈ R2. The rate ω1

2 may
not be bounded for all x. Considering u(t) = 0, a region in R2 may be defined where ω1

2 is positive.
A switching rule may be defined to avoid this region. For this example the region is small and can
be defined by ||x1|| < 0.0866 and ||x1|| > 20 ||x2|| For this region, only mode 2 may be active. With
this mild restriction to the switching, the system is passive and stable for zero input.

This process can be repeated as needed to determine passivity, passivity indices, or more general
forms of dissipativity. The only restriction is that the energy supply rates and cross supply rates
are polynomials that are linear in the decision variables. Since SOS methods are sufficient only, the
failure of a test for a specific energy supply rate does not imply that the system is not dissipative
with respect to that supply rate. It only implies that the property cannot be shown using SOS
methods for the given forms of storage functions and cross supply rates.

6 Conclusions

This report surveys existing computational methods for demonstrating that a system is passive
and dissipative. This included LMI methods for showing that LTI systems are passive or QSR
dissipative and SOS methods for demonstrating that polynomial nonlinear systems are passive or
dissipative. For existing methods, this paper is presented as a tutorial. Examples are provided for
using these methods to improve the applicability of the theory.

In addition to surveying existing results, new methods are presented on SOS methods for
showing that polynomial switched systems are passive or dissipative. SOS methods can be used to
find both storage functions and cross supply rates. These methods can greatly reduce the effort
required to demonstrate that a system is dissipative.
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